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The Coded Gaze: Bias in Artificial Intelligence | Equality Summit | Joy Buolamwini
https://www.youtube.com/watch?v=eRUEVYndh9c
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Why does it matter?
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Developers of AI systems have moral responsibility to ensure that their
systems are fair.

Embedded biases in systems impact the system’s fairness

Why does it matter?
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Some definitions

AI System:

Any system that does or assist in decision-making processes

Algorithmic Bias:

A systematic and repeatable pattern in a computer system that

creates unfair outcome
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What is fairness?

Individual Fairness

Individuals are treated
similarly, regarless of the

class they are in

Equal outcome

Each demographic class
gets the same resultsEqual opportunity

Each demographic class is
offered the same

opportunity

Fairness through
unawareness

If race and gender are
deleted, system cannot

discriminate

Group fairness

Two classes are treated
similarly
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Algorithms are not biased. Data is.

If the system is biased, it’s because the training dataset is biased.

To solve the problem of biased in AI, you simply need to unbiase the
datasets / add more diversity in the datasets

Quick Myth-busting
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1 Biased in AI systems is not limited to ML
Model-based AI can be biased too. Algorithms can be biased.

2Creating “non-biased system” is a socio-technical challenge
“Bias” only exists related to a societal context.

Two important takes
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Biased data

The data analysed in
biased, leading to a biased

analysis

Biased measure

A bad heuristic is used to
frame the problem, leading

to biases

Conflicting costs

Some types of fairness are
conflicting with each

others and needs to be
pondered

How can systems become biased?
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Biased data: Amazon’s recruiting tool
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Biased data: Amazon’s recruiting tool
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Previous applicants and results (10 years)

Biased data: Amazon’s recruiting tool
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Previous applicants and results (10 years)

Biased data: Amazon’s recruiting tool
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High risk

Low risk

Low risk

Health Risk

Biased measure: Framing the problem
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High risk

Low risk

Health Risk

Biased measure: Framing the problem
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Is a patient high-risk based on their history?

High risk

Low risk

Health Risk

Biased measure: Framing the problem
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Is a patient high-risk based on their history?

Has this patient spent a lot of money on
healthcare previously?

High risk

Low risk

Heuristic

Health Risk

Biased measure: Framing the problem
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Is a patient high-risk based on their history?

Has this patient spent a lot of money on
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High risk

Low risk

Heuristic

Bias
ed

 M
eas

ure

Health Risk

Biased measure: Framing the problem
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Biased data

The data analysed in
biased, leading to a biased

analysis

Biased measure

A bad heuristic is used to
frame the problem, leading

to biases

Conflicting costs

Some types of fairness are
conflicting with each

others and needs to be
pondered

How can systems become biased?
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High risk

High risk

Low risk

Recidive Risk

Conflicting costs: The example of COMPAS
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High risk

High risk

Low risk

Recidive Risk

Fairness: Well-Calibrated System

60% re-offended

61% re-offended

High risk

Conflicting costs: The example of COMPAS
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High risk

High risk

Low risk

Recidive Risk

Fairness: Well-Calibrated System

60% re-offended

61% re-offended

OK

High risk

Conflicting costs: The example of COMPAS
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High risk

High risk

Low risk

Recidive Risk

Fairness: Equal Opportunity?

23% did not re-offend

45% did not re-offend

High risk

Conflicting costs: The example of COMPAS
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Can a system be well calibrated and provide equal opportunity?

Conflicting costs: the conundrum
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Can a system be well calibrated and provide equal opportunity?

Kleinberg, J. et al. “Inherent Trade-Offs in the Fair Determination of Risk Scores.”
ArXiv abs/1609.05807 (2017): n. pag.

Conflicting costs: the conundrum
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Biased data

The data analysed in
biased, leading to a biased

analysis

Biased measure

A bad heuristic is used to
frame the problem, leading

to biases

Conflicting costs

Some types of fairness are
conflicting with each

others and needs to be
pondered

+ +

How can systems become biased?
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What can we do?
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Who are you going to talk to when eliciting the requirements?

Involving the right stakeholders

39Jennifer Renoux



Who would you involve if you were tasked to develop such a system?

Requirement: create an automated system helping nurses to decide
which patient to send to the emergency room.

High risk

Low risk

Involving the right stakeholders
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Hospital
administration

Nurses

Medical experts

Involving the right stakeholders
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Hospital
administration

Nurses

Medical experts

Representative for
patients Social scientists

Others?

Involving the right stakeholders
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Best
qualifications

Reconsidering the objective function
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Best
qualifications

May reward those with advantageous educational
opportunities, enforcing class boundaries

Reconsidering the objective function
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Best
qualifications

Best ability
to learn the

job

May reward those with advantageous educational
opportunities, enforcing class boundaries

Better chance to cut across class boundaries and
choose from a broader pool, but more difficult to

evaluate

Reconsidering the objective function
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Best
qualifications

Best ability
to learn the

job

May reward those with advantageous educational
opportunities, enforcing class boundaries

Better chance to cut across class boundaries and
choose from a broader pool, but more difficult to

evaluate

Reconsidering the objective function

Whatever the choice, it has to be an explicit reasoning and conscious decision
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You are more likely to spot problems if you are directly concered

The power of a diverse team

47Jennifer Renoux



You are more likely to spot problems if you are directly
concered

Did you know that some people are motion sick when playing video games?

(Digital Motion Sickness)

Is your GUI understandable for color-blind people?

Is your human-machine dialog model appropriate for non-binary or transgender
people?

The power of a diverse team
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Key Takeways

1
Software systems can cause unvoluntary harm
Software systems are used in many critical life situation. A bias system can cause “real-
world” harm.

2Creating “non-biased system” is a socio-technical challenge
“Bias” only exists related to a societal context.

3 Consider fairness from the start
Fairness is not something we add “when we have time”.
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