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The company’s system for targeting ads is under fire for gender and ethnic bias. In some cases, the cure could be worse than the disease.
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Why does it matter?
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Why does it matter?

Developers of Al systems have moral responsibility to ensure that their
systems are fair.

|

{ Embedded biases in systems impact the system'’s fairness
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Some definitions

Al System:
Any system that does or assist in decision-making processes

N

Algorithmic Bias:
A systematic and repeatable pattern in a computer system that
creates unfair outcome
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What is fairness?

Individual Fairness

Individuals are treated
similarly, regarless of the
class they are in

Equal opportunity

Each demographic class is
offered the same
opportunity

4
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Group fairness

Two classes are treated
similarly

4

Equal outcome

Each demographic class
gets the same results

4
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Fairness through
unawareness

If race and gender are
deleted, system cannot
discriminate
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Quick Myth-busting

{ Algorithms are not biased. Data is. J

[ If the system is biased, it's because the training dataset is biased. J

To solve the problem of biased in AI, you simply need to unbiase the
datasets / add more diversity in the datasets
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Two important takes

Biased in AI systems is not limited to ML
Model-based AI can be biased too. Algorithms can be biased.

Creating "non-biased system” is a socio-technical challenge
"Bias" only exists related to a societal context.

Jennifer Renoux

480
&]TY

&
%0 UNW

16

<



How can systems become biased?

Biased measure

A bad heuristic is used to
frame the problem, leading

to biases

4

Biased data
The data analysed in

analysis

biased, leading to a biased

4
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Some types of fairness are
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others and needs to be
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Biased data: Amazon's recruiting tool
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to biases

A bad heuristic is used to
frame the problem, leading

4

Jennifer Renoux

480
S[TY

<4 &
%0

23



280

)

Biased measure: Framing the problem

Dissecting racial bias in an algorithm used to manage
the health of populations

Ziad Obermeyer'Z*, Brian Powers®, Christine Vogeli®, Sendhil Mullainathan®*

Health Risk

| High risk |

— Lowrisk |
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Dissecting racial bias in an algorithm used to manage
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Biased measure: Framing the problem

Dissecting racial bias in an algorithm used to manage
the health of populations

Ziad Obermeyer'Z*, Brian Powers®, Christine Vogeli®, Sendhil Mullainathan®*

Health Risk [ Is a patient high-risk based on their history? ]

| High risk ) o
Heuristic
Has this patient spent a lot of money on
healthcare previously?
Low risk
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Biased measure: Framing the problem

Dissecting racial bias in an algorithm used to manage
the health of populations

Ziad Obermeyer'Z*, Brian Powers®, Christine Vogeli®, Sendhil Mullainathan®*

Health Risk [ Is a patient high-risk based on their history? ]
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How can systems become biased?
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Conflicting costs: The example of COMPAS

The accuracy, fairness, and limits
of predicting recidivism

Julia Dressel and Hany Farid*
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Conflicting costs: The example of COMPAS
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The accuracy, fairness, and limits

of predicting recidivism

Julia Dressel and Hany Farid*

Fairness: Equal Opportunity? ]

0
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High risk
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The accuracy, fairness, and limits [
of predicting recidivism

Julia Dressel and Hany Farid*
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Conflicting costs: the conundrum

{ Can a system be well calibrated and provide equal opportunity? J
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Conflicting costs: the conundrum

Can a system be well ca vide equal opportunity?

Kleinberg, J. et al. "Inherent Trade-Offs in the Fair Determination of Risk Scores.”
ArXiv abs/1609.05807 (2017): n. pag.
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How can systems become biased?

®

Biased measure

A bad heuristic is used to
frame the problem, leading

to biases

4

Biased data

The data analysed in
biased, leading to a biased

analysis
4
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Some types of fairness are
conflicting with each
others and needs to be
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What can we do?
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Involving the right stakeholders

{ Who are you going to talk to when eliciting the requirements? J

Jennifer Renoux
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Involving the right stakeholders

@)
Dissecting racial bias in an algorithm used to manage & ~
the health of populations

Ziad Obermeyer'*, Brian Powers®, Christine Vogeli*, Sendhil Mullainathan®* ®
q Low risk

Requirement: create an automated system helping nurses to decide
which patient to send to the emergency room.

{Who would you involve if you were tasked to develop such a system?}

Jennifer Renoux 40
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Involving the right stakeholders

administration

Hospital J

Medical experts J

Nurses
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Involving the right stakeholders

administration

Hospital J

Nurses

Representative for
patients

4

Social scientists J
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Others? J
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Reconsidering the objective function
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Reconsidering the objective function

Best

{ May reward those with advantageous educational J
qualifications

opportunities, enforcing class boundaries
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May reward those with advantageous educational

opportunities, enforcing class boundaries

|

Best ability
to learn the
job

Better chance to cut across class boundaries and
choose from a broader pool, but more difficult to

evaluate
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Reconsidering the objective function

Best

qualifications

May reward those with advantageous educational
opportunities, enforcing class boundaries

Best ability
to learn the
job

Better chance to cut across class boundaries and
choose from a broader pool, but more difficult to
evaluate
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Whatever the choice, it has to be an explicit reasoning and conscious decision }
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The power of a diverse team

{ You are more likely to spot problems if you are directly concered J
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The power of a diverse team

4 . . .

You are more likely to spot problems if you are directly
5 concered
-

Did you know that some people are motion sick when playing video games?
. (Digital Motion Sickness)
(

Is your GUI understandable for color-blind people?

-

Is your human-machine dialog model appropriate for non-binary or transgender
people?

Jennifer Renoux
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Key Takeways

Software systems are used in many critical life situation. A bias system can cause "real-
world” harm.

Creating “non-biased system” is a socio-technical challenge
“Bias” only exists related to a societal context.

Consider fairness from the start
Fairness is not something we add “"when we have time".

Jennifer Renoux 49
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