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In traditional decision-theoretic planning, information gathering is a means to a goal. The agent receives information about
its environment (state or observation) and uses it as a way to optimize a state-based reward function. Recent works, however,
have focused on application domains in which information gathering is not only the mean but the goal itself. The agent must
optimize its knowledge of the environment. However, traditional Markov-based decision-theoretic models cannot account for
rewarding the agent based on its knowledge, which leads to the development of many approaches to overcome this limitation.
We survey recent approaches for using decision-theoretic models in information-gathering scenarios, highlighting common
practices and existing generic models and show that existing methods can be categorized into three classes: reactive sensing,
single-agent active sensing, and multi-agent active sensing. Finally, we highlight potential research gaps and suggest directions
for future research.
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1 INTRODUCTION
Sequential decision-making under uncertainty, i.e., the problem of optimizing a sequence of actions given a
stochastic or partially observable environment, includes an information-gathering component inherently. The
agent acts based on its world model and observes the result of its actions to decide on the next one. In most
scenarios, usually modeled with decision-theoretic models, information gathering is a by-product of a reward
defined on states (e.g., using the appropriate treatment, reaching a certain point in space, finding a specific object).
However, some scenarios consider information gathering as their primary goal, for instance, target tracking
or patrolling applications. This sub-field of decision-theoretic planning has gathered the attention of several
researchers in the past years. These are the scenarios we consider in this paper, which follows from identifying
the need to compile the current state of the art for this topic.

Therefore, in this survey, we analyze the state of the art about decision-theoretic approaches for information
gathering. We observe that many branches in the literature claim to do information gathering with many different
approaches, some more empirical and others more comprehensive.
∗Both authors contributed equally to this research.

Authors’ addresses: Tiago Veiga, tiago.veiga@ntnu.no, Department of Computer Science, Norwegian University of Science and Technology,
Trondheim, Norway; Jennifer Renoux, Center for Applied Autonomous Sensor Systems, Örebro University, Örebro, Sweden, jennifer.renoux@
oru.se.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© 2023 Association for Computing Machinery.
XXXX-XXXX/2023/2-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: February 2023.

HTTPS://ORCID.ORG/0000-0002-5844-9383
HTTPS://ORCID.ORG/0000-0002-2385-9470
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0000-0002-5844-9383
https://orcid.org/0000-0002-2385-9470
https://doi.org/XXXXXXX.XXXXXXX


2 • Veiga and Renoux

We categorize the literature into three main branches, which follow different levels of systematization, agents’
self-awareness, and capability of analyzing the environment and other actors’ intentions. We term these categories
as reactive sensing, single-agent active sensing, andmulti-agent active sensing, which separate agents which perform
information gathering without explicitly reasoning about their internal knowledge state from agents which
decide based on this knowledge state, and finally agents which incorporate in their knowledge state information
about the other actors in the environment. After analyzing these categories of approaches, we discuss our main
findings while reviewing those articles. Among others, we argue that the current state of the art points out that
decision-making processes that explicitly depend on knowledge are more generalizable and make it possible
to target more types of problems. However, there is a lack of literature on real applications using these general
methods.

1.1 Contributions
This paper aims to bring a renewed overview of the information gathering and epistemic planning frameworks
with decision-theoretic planning methods. The main contributions of this paper are:

• A principled formulation of the relation between information gathering and epistemic planning, where we
identify the intersection between epistemic planning and information gathering fields.

• A comprehensive literature review on sequential decision-making with information-gathering goals, where
we propose a grouping between different approaches within each sub-field we identified.

• The identification of future research steps in this topic, based on our literature review analysis.

1.2 Problem definition
The term information gathering usually refers to problems in which collecting information about the environment
is the goal of the system in itself. Over the years, many methods have been developed for information gathering,
which differ in how they model the knowledge acquisition process and the kind of reasoning the planning agent
is capable of.
Active sensing has been first defined in [8] as “the problem of an intelligent data acquisition process”, more

specifically a “problem of controlling strategies applied to the data acquisition process which will depend on the
current state of the data interpretation and the goal or the task of the process”. Even though it initially focused on
computer vision systems, this definition still holds for other active perception systems developed over the years.
Bajcsy et al. [9] later revisited this definition, emphasizing that the most essential aspect of the active perceiver
compared to other artificial agents is that the active perceiver knows why it is sensing, chooses what to perceive
and determine when, where, and how to perceive. This specificity implies that the active perceiver is not only
able to decide how to act to perceive better but also when and how not to act, for instance, if it infers that the
action is not worth the information gain. By being able to reason over its own knowledge and plan for the best
way to acquire new knowledge, the active perceiver is inherently performing Epistemic Planning.

The term Epistemic Planning has been first introduced in [14] as the approach that allows planning on epistemic
models and specifically using Dynamic Epistemic Logic (DEL). DEL considers lack of knowledge as an input for
reasoning, the same way knowledge is. It also considers that partial observability and lack of knowledge are
related but different problems. Therefore, the DEL-based epistemic planning allows for actions (also called event
models) to be either factual (i.e., changing the world itself, also referred to as ontic), epistemic (changing the
agent’s knowledge about the world but not the world itself), or a combination of thereof.
More recently, the meaning of the term epistemic planning has broadened to encompass any approach that

allows planning with epistemic states, actions, and goals [10]. In its broader sense, the epistemic planning problem
encompasses the active sensing problem but is not limited to it. Indeed, epistemic planning can be performed
without the goal of information gathering, e.g., to coordinate with a team or influence another agent’s knowledge

, Vol. 1, No. 1, Article . Publication date: February 2023.



From Reactive to Active Sensing: a Survey on Information Gathering in Decision-Theoretic Planning • 3

state. However, any problem that reason on knowledge acquisition, i.e. active sensing, is, in essence, an epistemic
planning problem.
However, when referring to information-gathering problems, it is not strictly necessary that the agent is an

active perceiver and can decide not to act. In many cases, especially in patrolling and surveillance problems, the
agent’s model is designed so that the agent can reach a desirable level of knowledge, but without any reasoning
on the impact of the sensing action per se. We will refer to these models in the remainder of this paper as reactive
sensing. We define reactive sensing as the process by which an agent gathers information without explicitly
optimizing for information gain but by reacting to external stimuli (e.g., being in the same location as a moving
target).

Figure 1 summarizes the relationship between these different concepts. We claim that active sensing combines
epistemic planning in its broadest sense and information gathering. Reactive sensing is a set of methods to
perform information gathering which does not optimize for information gain per se.

Fig. 1. Information gathering can be performed through active or reactive sensing. Active sensing uses epistemic planning
approaches to optimize for information gain.

1.3 Illustrative Example: Target Tracking
Throughout this survey, we will use a target tracking scenario as an example to illustrate the concepts. This is
a generic but common scenario found as a testing environment for many planning methods. In this scenario,
depicted in Figure 2, a mobile agent must patrol a given scenario environment containing several nodes to track
a target. In this context, tracking might have different meanings, such as triggering an alarm whether or not
a target (e.g., an intruder) is found in the environment or being able to follow the target accurately, given its
uncertain movements. These differences might also influence the planning method and will be further discussed
throughout the paper.

We first consider a simple scenario with one agent and one target and will extend this scenario in Section 5 to
multi-agent problems.
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Fig. 2. Illustration of the Target Tracking toy problem example. This scenario models an autonomous robot that must patrol a
discretized environment by moving freely between the different rooms and is rewarded for correctly identifying the position
of the human target.

1.4 Methodology
We build the set of papers we surveyed iteratively using specialized search tools (Google Scholar, Semantic Scholar,
Connected Papers) and combinations of the following keywords: information-gathering, (partially observable)
Markov decision processes (including their acronyms), decision-theoretic planning, active sensing, multi-agent
systems. We considered three inclusion criteria :
(1) Information-gathering as a goal: Many papers consider information-gathering actions as a way to

improve the planning agent’s knowledge about its environment, e.g., in [49]. However, the main goal of
these systems is still to reach a given state, and information gathering is only a means to reach such a state.
In the current review, we only included papers in which information-gathering is the main problem being
addressed.

(2) Decision-theoretic formalization:We only included papers that formulated their information-gathering
problem as a decision-theoretic problem (regardless of how the problem is solved)

(3) Peer-reviewed: We only included papers that have been accepted in a peer-reviewed venue before the 1st
of April 2022.

These criteria resulted in 51 collected papers, which we classified into three categories: reactive sensing (Section
3), single-agent active sensing (Section 4), and multi-agent active sensing (Section 5). We decided to separate
single and multi-agent active sensing as the multi-agent aspect brings additional challenges that ought to be
considered separately and will be reviewed in Section 5. Table 1 presents a summary of how the papers in this
survey have been organized.

1.5 Outline
The remainder of this paper will be organized as follows. Section 2 will present some of the required background
knowledge on decision-theoretic planning. Then Section 3 will give our definition of reactive sensing and review
papers falling in this category. Section 4 will review papers proposing models to perform active sensing. Section 5
will focus on models specifically designed to tackle multi-agent aspects. Finally, Section 6 will summarize and
discuss our findings and propose leads for future research areas.
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Reactive Sensing Active Sensing

Single Agent [34] [32] [33] [36] [35] [7] [31] [70]
[73] [72] [39] [51] [53] [21] [50] [67]
[46] [25] [26] [4] [61]

[65] [3] [74] [64] [18] [23] [63] [17]
[76] [24] [29] [77] [41] [19] [55] [52]
[16] [20] [78] (application) [79] (ap-
plication) [80] (application)

Multi-Agent [38] [22] [58] [59] [60] [42] [44] [45] [43]
[12] [13] [68]

Table 1. Summary of the classification of each surveyed paper

2 BACKGROUND ON DECISION-THEORETIC PLANNING
This section will review some of the basics of decision-theoretic planning, limited to the concepts needed to
understand the remainder of this paper. For a more detailed introduction to decision-theoretic planning, we refer
the reader to [40].
Decision-theoretic planning can be defined as "an extension of the classical AI planning paradigm because

it allows one to model problems in which actions have uncertain effects, the decision maker has incomplete
information about the world" [15]. It roots in decision theory to weigh the value of different courses of action and
extends toward the problem of constructing plans to optimize those outcomes. A general model that captures
this problem is given by Markov Decision Processes (MDP) and their extension to state uncertainty, Partially
Observable Markov Decision Processes (POMDP) [37, 71]. Here, we provide an overview of decision-theoretic
planning under uncertainty in stochastic environments modeled as a POMDP.

2.1 Definition
A POMDP models the interaction of an agent with a stochastic and partially observable environment, and it
provides a rich mathematical framework for acting optimally in such environments. It can be represented by a
tuple ⟨𝑆,𝐴,𝑂,𝑇 ,Ω, 𝑅, ℎ,𝛾⟩. At any time step, the environment is in a state 𝑠 ∈ 𝑆 , the agent takes an action 𝑎 ∈ 𝐴

and receives a reward 𝑅(𝑠, 𝑎) from the environment as a result of this action, while the environment switches to
a new state 𝑠′ according to a known stochastic transition model 𝑇 : 𝑝 (𝑠′ |𝑠, 𝑎). After transitioning to a new state,
the agent perceives an observation 𝑜 ∈ 𝑂 , that may be conditional on its action, which provides information
about the state 𝑠′ through a known stochastic observation model Ω : 𝑝 (𝑜 |𝑠′, 𝑎). The agent’s task is defined by the
reward it receives each time step 𝑡 , and its goal is to maximize its expected long-term reward 𝐸 [∑ℎ

𝑡=0 𝛾
𝑡𝑅(𝑠𝑡 , 𝑎𝑡 )],

where ℎ is the planning horizon, and 𝛾 is a discount rate, 0 ≤ 𝛾 < 1.
Given the transition and observation model, the POMDP can be transformed to a belief-state MDP: the agent

summarizes all information about its past using a belief vector 𝑏 (𝑠). The initial state of the system is drawn from
the initial belief 𝑏0, and every time the agent takes an action 𝑎 and observes 𝑜 , its belief is updated through Bayes’
rule:

𝑏𝑎𝑜 (𝑠′) = 𝑝 (𝑜 |𝑠′, 𝑎)
𝑝 (𝑜 |𝑎, 𝑏)

∑︁
𝑠∈𝑆

𝑝 (𝑠′ |𝑠, 𝑎)𝑏 (𝑠), (1)

where
𝑝 (𝑜 |𝑎, 𝑏) =

∑︁
𝑠′∈𝑆

𝑝 (𝑜 |𝑠′, 𝑎)
∑︁
𝑠∈𝑆

𝑝 (𝑠′ |𝑠, 𝑎)𝑏 (𝑠) (2)

is a normalizing constant.
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2.2 Solutions
Solving a POMDP means finding the best possible policy that maps the belief state to agent actions. Solving
POMDPs optimally is hard, and thus algorithms that compute approximate solutions are often used [34, 56, 75].

There are two approaches to compute policies, dubbed offline and online solving. As the names indicate, offline
solving pre-computes the policy given a description of the world model [66]. Then, at runtime, looking up the
best action for the current belief is efficient. These methods typically exploit the fact that POMDP solutions
are piecewise linear and convex (PWLC), allowing for their compact representation, but are limited to linear
rewards over the belief space. On the other hand, online methods attempt to compute a good local policy for the
current belief state by interleaving planning and execution [62]. Generally, they use heuristics to expand a tree of
reachable belief states and compute the best possible action path down the tree. Online methods do not have
restrictions on the form of rewards, but heuristics are often derived from offline approximations, which have this
restriction.

2.3 Multi Agent Planning
In multi-agent settings, the model chosen to represent the agents in the systemwill depend on the relation between
the agents in the system. The two most extreme types of relations are fully-cooperative and fully-competitive. In
fully-cooperative settings, the agents share the same reward function and work for a system-wide goal. In fully
competitive settings, an agent can only win when another loses. Between these two extremes, agents may share
some goals but also have personal objectives that may or may not compete with other agents’ objectives. Many
extensions of existing decision-theoretic models have been proposed to tackle the multi-agent planning problem,
such as the Decentralized POMDP [11] (Dec-POMDP), the Multi-agent Team Decision Problem (MTDP)[57], or
the Interactive POMDP (I-POMDP)[28].

3 REACTIVE SENSING
In this section, we will tackle the literature review on what we named reactive sensing. Roughly, this includes
a broad set of approaches that tackle the problem of finding information about some feature in the agent’s
environment but without directly tackling information measures. We claim this set of methods to be reactive, in
the sense that the agent’s decisions are not actively directed towards information gain but, instead, guided as
reactions to external stimuli. We start by framing an example in our target tracking problem to illustrate the
type of behavior exhibited by these methods and then classify them in the literature review in five different
sub-categories based on similarity.

3.1 Illustrative Example
Figure 3 illustrates the reactive sensing strategy in the target tracking example. In this approach, the agent must
obtain some information from the environment (the position of the target) but is driven by physical events,
namely, being in the same node as the target at the same time (or detecting the target in its field of view). The
side effect of this approach is that negative past observations are not as valuable as they could be for the agent.
For instance, even if the agent has visited all but one node in the system and theoretically “knows” that the target
is in the non visited one, it is not rewarded for this knowledge and must visit the last node to receive its reward.

3.2 Literature Review
Our literature analysis revealed that works dealing with reactive sensing problems present some commonalities
in how they formulate and solve the problem. Based on these commonalities, we identified five strategies used to
tackle reactive sensing problems: (1) the target tracking strategy, (2) the classification action strategy, (3) the
external information metrics strategy, (4) the sensing actions strategy, and (5) the oracular observation providers
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(a) Low Reward (b) High Reward

Fig. 3. Illustrative Target Tracking toy problem example in a reactive sensing setting. Here, the objective is formulated in
terms of the current physical situation. I.e., the robot reacts to the current observation available. It gets a low reward when
the target is not directly visible, subfigure 3a, and a high reward otherwise, subfigure 3b.

strategy . Subsections 3.2.1 to 3.2.5 present each of these strategies. Each section starts with a generic presentation
of the strategy, with mathematical formulations when applicable, followed by a review of the works that follow
this strategy.

3.2.1 Target tracking. One strategy often taken to gather information is to reward the agent when the gatherer
(or gatherer’s field of view) coincides with the “target”’s position. This is the strategy usually chosen by patrolling
and target tracking applications. The reward function for such cases generally looks like the following:

𝑅(𝑠) =
{
𝑎 if 𝑋 = 𝑌

𝑏 if 𝑋 ≠ 𝑌
(3)

where 𝑋 can be the position of the agent and 𝑌 a generic representation of the target’s position or any
observable feature, and 𝑏 ≤ 0 < 𝑎. Note that, in this case, the planning solver weights the reward function with
the current belief to determine the current belief-based reward:

𝑅(𝑏, 𝑎) =
∑︁
𝑠∈𝑆

𝑅(𝑠, 𝑎)𝑏 (𝑠) (4)

In practice, this means that an agent will try uncertainty reduction measures if that helps perform a given
task, but its goals are formulated to achieve a determined world configuration and not with respect to its internal
knowledge state.

A typical scenario in which perception plays an important role is target tracking, either with mobile agents or
sensor networks. The objective formulation, in this case, can be formulated by giving a fixed reward when two
desired values of state variables collide or a fixed cost otherwise. Then, this triggers the behavior of trying to find
the information of interest in the environment to receive a positive reward. This formulation was implemented in
[34], which uses a target tracking scenario as the use case to test a POMDP solver. Here, the agent is awarded a
positive reward for being in the same cell as the target, and the only source of uncertainty is the non-deterministic
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target movement. In the same spirit, a few authors exploited decision theory to extend classic classifiers with a
Bayesian cost formulation. Hitchings and Castañón [32, 33] tackle the problem of, for each of a set of available
sensors, selecting the location to observe and the sensor mode. Deriving from a control-theoretic formulation but
decoupling into several POMDPs, the objective function is obtained from a Bayes cost formulation, i.e., the cost
of selecting an estimate 𝑣𝑖 when the actual state is 𝑥𝑖 . A similar approach is found in [36]. Also, Ji and Carin [35]
implements a classification system (i.e., given a set of classes and feature acquisition actions, declare which class
is the real one for the problem) with a POMDP-like structure. In [7], a sensor scheduling problem is formulated
as a POMDP. There is an energy cost for sensor usage and a fixed tracking cost for each time unit that the target
is not observed. Kartal et al. [38] presents an extension of MCTS for multi-agent continuous patrolling of an
environment. The reward is defined as a positive reward if one member of the patrolling team is in the same
location as the intruder.

3.2.2 Classification actions. Historically, classification rewards can be seen as an ancient version of active sensing
models. The agent still does not actively reason about its knowledge state but indirectly through an internal
variable that represents the current knowledge of the agent. This is implemented by extending the world model
with classifying actions 𝐶 , which declare that a given state variable is of a given type. When the classification is
correct, the reward is positive, and if it is incorrect, then the reward is negative. Additionally, the agent has the
option to not classify in case its knowledge is not sufficient for such a decision. Formally, the reward function
takes the following form:

𝑅(𝑠, 𝑎𝑋=𝑦
𝑐 ) =


𝑎 if 𝑋 = 𝑦 ∩ 𝐶 = 𝑦𝑒𝑠

𝑏 if 𝑋 ≠ 𝑦 ∩ 𝐶 = 𝑦𝑒𝑠

𝑐 if 𝐶 = 𝑛𝑜

(5)

where𝑋 is the state variable of interest,𝑦 any of its possible values, 𝑎𝑋=𝑦
𝑐 is a binary classifying action declaring

that the environment feature 𝑋 takes the value 𝑦, and 𝑏 ≤ 0 ≤ 𝑐 < 𝑎.
This subset of methods is arguably borderline between reactive and active sensing in that they are designed

with the information-gathering aspect at their core. In practice, the goal is to maximize the information available
to the agent. However, we decided to include them in the reactive sensing section of our analysis for two main
reasons. First, the reward system is still constructed on top of state-based rewards with an extra bookkeeping
variable to force the model to improve its knowledge level. Second, the model designer defines the reward levels
empirically with no guiding rules on how to design them. This contrasts with the methods presented later under
the active sensing umbrella, in Section 4, which directly reward the level of information and have guidelines for
designing rewards according to the minimal threshold of knowledge level desired by the system designer.

Guo [31] presents the first formulation for this approach and sets the equivalence of the problem modeled as a
Bayesian network classifier and a POMDP. Then, it describes a POMDP framework for information gathering in
which the actions use a particular sensor when enough information has been gathered, outputting a particular
classification label. Then, Spaan [70] and Spaan et al. [73] generalize this idea for factored models, which allows
focusing on specific features of the environment, and present a practical implementation with POMDPs in
surveillance problems with networks of cameras.

3.2.3 External information metrics. A different approach within this strategy is to reflect external information
metrics in the state-based reward function. For instance, Spaan and Lima [72] models a dynamic sensor selection
problem as a POMDP to select a subset of cameras to observe a given area. Here, the reward is obtained through
the covariance matrix of observing a spot through a selection of cameras. Although formulated as an MDP and
therefore not incorporating any uncertainty tracking, Kent and Chernova [39] tackles the problem of visual
coverage of targets, in which the objective is formulated as a measure of the coverage of a region of interest by the
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robot’s field of view, with added costs for collisions with humans, the degree of intrusion in the human’s space
and power consumption. Liu and Williams [51] mixes classification actions with costs based on covariances in a
sensor selection setting, exploiting the cost function’s submodular properties. This approach is also followed with
reinforcement learning, given the difficulty of explicitly maintaining internal information measures. Murad et al.
[53] implements a reinforcement-learning-based method to decide on sensing actions in which the state-based
reward is based on information from an external inference process. Eck and Soh [21] uses reinforcement learning
to compute policies for Observer Effect POMDPs, which balance the use of sensing resources that deteriorate
over usage with rewards based on externally measured knowledge refinement. Linke et al. [50] surveys several
other approaches under this topic.

3.2.4 Sensing actions. The advance of factored models allowed the exploitation of statistical independence
between model variables, either state or action variables. This allows a better, easier design of world models and
the development of more efficient optimizers [67]. Factored state spaces allow algorithms to focus on features of
interest in the environment and, therefore, the system designer to specify which of these features the perception
system should highlight. In addition, pure sensing actions do not physically affect the environment but influence
the agent’s knowledge state. Thus, the actions space can be redefined as 𝐴 = 𝐴𝑑 × 𝐴𝑠 , where 𝐴𝑑 is the set of
non-sensing actions that affect the environment and 𝐴𝑠 is the set of sensing actions that do not have an effect on
the environment but affect how the agent observes it. Lauri and Ritala [46] exploits this to define sets of sensing
and non-sensing actions, which allows the agent to select which sensor to use at each timestep, independently of
the actions which interact with the environment. This idea will be explored later by more systematic approaches
to information gathering. Ghasemi and Topcu [25, 26] systematize this idea into an online algorithm and an
extension of point-based value iteration methods, respectively. The main point is to extend the regular POMDP
decision loop with a greedy perception scheme that chooses the best perception action for that timestep.

3.2.5 Oracular observation providers. Similar to the inclusions of sensing and non-sensing sets of actions, we find
a line of work that extends the POMDP model with sets of oracular actions, which extends the actions space with
a query action. Therefore, 𝐴 = 𝐴𝑑 ∪ 𝑎𝑎𝑠𝑘 , where 𝐴𝑑 is the previous set of actions available to the agent and 𝑎𝑎𝑠𝑘
the query action, allowing the agent to ask an external observer, typically a human, about the true nature of a
given feature of the environment [4]. This decision can be based on the uncertainty levels [61], but the proposed
formulation resorts to solving the underlying MDP and then, at execution time, adding the current value of
information and the possible gain for asking. This results in a myopic policy that does not directly consider the
effects of the agent’s actions on the value of its information.

4 SINGLE-AGENT ACTIVE SENSING
Contrasting to the approaches summarized in the previous section, we define Active Sensing as the category of
methods which actively reason about the features of interest in the environment and proactively take actions
to improve the level of information about them. Although they might have similarities in spirit, there are key
differences in the inner motivations for the agent’s actions. An illustrative example is, for instance, the value of
negative observations with which an agent can infer that, by not observing something, there is a higher chance
somewhere else. Reactive approaches, in this case, are not able to make such inferences. Consequently, active
methods tend to be more generalizable as they focus less on specific problems but rather on the general problem
of how to plan for information gain.

4.1 Illustrative Example
We now go back to the illustrative target tracking example and describe what an active sensing approach looks
like, illustrated by Figure 4. Again, the general goal of the agent is to detect the target in the environment. Unlike
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in the information-gathering approach, the agent incorporates previous observations to generate a (typically
probabilistic) state of knowledge that also learns from negative observations. For instance, let us say that the agent
maintains a probabilistic distribution of the possible target locations. It starts as a uniform distribution (Figure
4a) and is updated based on the output of the observations of the agent and its (known a priori) probabilities.
A negative observation at a given node will reduce the probability of the target being there and increase the
probability of being somewhere else. Therefore, there are now two different ways that the agent can localize
the target. First, it can directly observe the target (Figure 4b) with a search that can be guided by the higher
probability level for different nodes. Alternatively, the agent might infer the target’s position without directly
observing it but rather collecting a set of negative observations at all other locations (Figure 4c).

4.2 Literature Review
The most straightforward and studied way to switch from reactive to active sensing is to change the reward
function of decision-theoretic models to reward the agent on a belief state instead of an environmental state.
Such a belief-based reward, usually noted 𝜌 (𝑏, 𝑎)1, may introduce information quantifying measures such as in
[65], which seems to be the first formal proposal in the direction of active sensing, with a scenario of choosing
sensor modes according to an entropy-based measure. Commonly used information quantifying measures are
the entropy of the belief, Eq.8 or the distance to the center of the belief simplex, Eq.9.

𝜌 (𝑏, 𝑎) =

𝑙𝑜𝑔𝑠 ( |𝑆 |) +

∑︁
𝑠∈𝑆

𝑏 (𝑠)𝑙𝑜𝑔2 (𝑏 (𝑠)) if entropy (8)

∥𝑏 − 𝑐 ∥𝑝 if distance to center simplex (9)

This approach is followed by the first general model dedicated to information gathering: the 𝜌-POMDP[3].
The 𝜌-POMDP is a modified POMDP in which the state-based reward function 𝑅(𝑆, 𝑎) is replaced by a general
belief-based reward 𝜌 (𝑏, 𝑎).

However, switching from a state-based reward to a belief-based reward brings many challenges in solving the
resulting model. Indeed, much of the literature on POMDP solving relies on the PWLC property of the value
function, which in turn, depends on a state-based formulation of the reward function. In the remainder of this
section, we will explore how contributions in active sensing dealt with this issue.

4.2.1 Linear rewards. Early active sensing works, like the one already mentioned [3, 65] rely on linearizations
of convex uncertainty functions (entropy and distance to the center of the belief simplex). They note that the
solving methods existing at the time, in particular Incremental Pruning, require piecewise linear rewards and,
therefore, propose a linearization with tangents of a non-linear reward function.
Araya-López et al. [3] also replace the classical reward representation with a set of vectors representing a

PWLC reward function and show that if these vectors are tangents of convex information measures, then the error
in the value function is bounded relative to using the true reward function. The alternative POMDP-IR approach
[74] extends the action space such that, at each decision step, the agent decides on a so-called domain action and
predictions actions. Domain actions physically affect the environment and influence transitions and observations.
In contrast, prediction actions only affect the reward, such that a positive reward is given if the predictions
match the real value of the state features or negative otherwise. The reward function is still piecewise linear,
but the balance between these predictions rewards will is such that the agent only gets a positive reward if the
belief for that particular state feature is above a pre-defined threshold, giving the system designer the possibility
to define priorities between gathering information on different features. Later, Satsangi et al. [64] proved the
equivalence between both formulations such that a problem formulated as a 𝜌POMDP can be reduced to a
1Notation may differ, from using 𝜌 (𝑏, 𝑎) to represent any function or to represent only non-linear function such as entropy.
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(a) Low Reward

(b) High Reward 1 (c) High Reward 2

Fig. 4. Illustrative Target Tracking toy problem example for active sensing, where 𝑏𝑡 is the belief (or knowledge state) of the
agent at a given timestep 𝑡 . Here, the reward is based on the probabilistic information of the target’s possible location. The
agent is rewarded for having low-uncertain information about the target’s position. This implies a low reward when the
information is ambiguous (Subfigure 4a). It also implies that the agent can get a high reward when the target is directly
visible (Subfigure 4b) but also when the history of observations leads to a highly accurate belief even when never receiving a
positive observation (Subfigure 4c).

POMDP-IR and vice-versa. Dressel and Kochenderfer [18] extends another point-based POMDP solver, SARSOP,
to use belief-based rewards. These belief-based rewards are linearizations of information measures to avoid losing
the PWLC property. Fehr et al. [23] claims that there are situations in which the desired information-based reward
is non-convex and replace the PWLC requirement of the reward function to Lipschitz continuity, demonstrating
that, for finite horizons, Lipschitz reward functions lead to Lipschitz continuous optimal value function. In
practice, the approach is also to linearize the reward function using the Lipschitz continuity properties, and,
therefore, it can still be solved with adapted point-based methods. An extension of the information reward
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concept to reinforcement learning is proposed in [63], which introduced deep anticipatory networks that drive
the agent to take actions that help it predict the true value of an unknown variable.

4.2.2 Non-linear rewards. Alternative approaches attempt to circumvent the PWLC requirement. For instance,
Chong et al. [17] discusses POMDPs for adaptive sensing with references to information gain metrics as the
rewards with approximations to Q function computation which do not restrict the reward function, although
with limitations. One common approach is the use of online methods. This class of algorithms constructs a tree
with possible future outcomes with the current belief as the root. It does not rely on an explicit closed-form
representation of the value function but on forward simulations from the current situation. Therefore, in theory,
any kind of reward is acceptable in this approach. However, there is a distinction between the case when the
full belief is used and propagated down the tree or when particle filter approaches are used to approximate the
belief state. In the latter, at any stage, one can compute any belief-based reward at the cost of computing belief
updates for every node. Arora et al. [5, 6] and Lauri and Ritala [48] use this approach in the field of autonomous
robots, one to tackle the problem of autonomously deciding whether observed events are of scientific interest
when exploring remote environments while the other maximizes the amount of information collected about
the environment. Furthermore, these approaches used mutual information between state and observation as
the reward function, which roughly indicates the information gain between current and future knowledge
conditioned on the received observation. Similar approaches are found in [54] and [47] with, respectively, greedy
search algorithms for teams of agents and planning for inference of random variables by relaxing the problem to
a multi-armed bandit equivalent. When computing exact beliefs is not feasible or is costly, approximations such
as POMCP approximate a search in the belief space by performing many simulations in the state space, sampling
the root particle from the root belief. Usually, the tree construction process is guided by meaningless rollouts
for information-oriented problems, as one cannot estimate the best paths down the tree with a few simulations.
Expanding on this concept, the 𝜌POMCP [76] extends the POMCP algorithm by generating a set of additional
particles, kept in parallel and propagated down the tree such that it offers an initial estimate for the belief (and
subsequently, a measure of the information quality) as a node is initialized. A similar approach is followed in
[24] for continuous state and observation domains. Similar to the approach of defining parallel sensing actions,
Greigarn et al. [29] presents an approach to compute the best sensing actions with information-based rewards. It
proposes a myopic, online procedure that, at each timestep, computes the best sensing action to minimize the
entropy of future task actions. Välimäki and Ritala [77] formulates the problem of a robot deciding where to turn
its cameras with a POMDP formulation that assumes gaussian dynamics. However, it considers only myopic
optimization of the immediate information gain. A hierarchical belief space planning is proposed in [41], where
different levels deal with different kinds of uncertainty. Planning is based on a forward search for 𝑛 steps into the
future, allowing directly belief-based rewards.

4.2.3 Belief-MDP. Some approaches circumvent the problem of solving POMDPs by reducing the formulation to
a belief MDP. This definition of belief MDP implies that the belief is one of the features included in the state space
of an MDP, along with other fully observable state features. Typically, this implies that the belief is maintained
externally and is not directly part of the planning process. Dressel and Kochenderfer [19] uses this approach in
a drone tracking scenario, where the cost includes the entropy of the belief, and Oh and Powell [55] similarly
models a contamination cleaning problem with this approach. Eck and Soh [22] presents a multi-agent approach
to reason when to sense the environment, request, or share information. An information-gathering POMDP
formulation is reduced to a Knowledge State MDP, with fully observable knowledge variables in the state space
(e.g., a discretization of the belief entropy), although physical actions (e.g., where to sense?) is left out of the
model. How the authors deal with the multi-agent aspect is reviewed in Section 5.
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4.2.4 Hybrid rewards. So far, we have distinguished state-based and belief-based rewards as two opposing
approaches to formulating information gain objectives. However, most of the reviewed approaches may accom-
modate a mix of both, which is dubbed in the literature as multi-objective performance criterion [52], mixed
criterion [16], or hybrid rewards [20]. Generally, those represent the total agent’s reward as a weighted sum
between task utilities and cost with information measures. This is typically represented with a mix of equations 4
and one of the possible representations for 𝜌 (𝑏, 𝑎), such as Eqs.8, 9: 𝑅(𝑏, 𝑎) = 𝜔

∑
𝑠∈𝑆 𝑅(𝑠, 𝑎)𝑏 (𝑠) + (1 −𝜔)𝜌 (𝑏, 𝑎),

where 𝜔 is the optional weight factor. In practice, this approach is the most suitable for real scenarios as one
typically wants to balance different costs (energy, maintenance, communication, etc.) with information gains.

5 MULTI-AGENT ACTIVE SENSING
In Section 4, we covered studies for single-agent active sensing. Even though multi-agent problems could be
represented in such models (through a centralized planning process), the models are not specifically designed
to address multi-agent-specific challenges. This section focuses on inherently multi-agent models, both in
cooperative and competitive settings.

5.1 Illustrative Example
We will now extend our illustrative example to multi-agent settings, as seen in Figure 5. We consider the case in
which two patrolling agents must locate the target. This scenario presents both cooperative and competitive
multi-agent settings. In the cooperative setting (Figure 5a), the agents’ goal is to coordinate to detect the target
faster. One robot communicates that it intends to go down. The second agent can then reason on this fact and
decide to go up to avoid overlapping. In the competitive setting (Figure 5b), the target is considered an agent in
the system instead of a moving feature of the environment, and the planning agent can incorporate one additional
level of reasoning, which is the internal state of the target. Therefore the planning agent does not only reason
about the target’s “environmental” properties (location, speed, etc.) but also its possible beliefs, intentions, goals,
etc., which allows for more efficient action planning. In our example, the robot knows that the target intends to
go down (from previous sensing actions, such as intercepting a message, observing the target’s past behavior, or
inferring from the target’s type) and therefore plans to go right itself to intercept the target.

5.2 Literature Review
Multi-agent active sensing development is relatively recent. Models in the literature can address cooperative,
self-interested, or adversarial settings. Cooperative settings usually focus on coordination to efficiently cover
the environment or to maintain a common belief state. In self-interested and adversarial settings, the agents
typically focus on gathering information to anticipate the other agents’ actions and react appropriately to avoid
an undesirable state such as a collision or counter an adversarial attack. In both settings, however, it is interesting
to note that the information-gathering process targets not only environmental factors (including a possible
opponent location, speed, etc.) but also the other agents’ internal states (their intention, goals, beliefs, etc.).

5.2.1 Cooperative Settings. To our knowledge, the first models to address multi-agent active perception are
proposed by Renoux et al. [58] and Eck and Soh [22], who develop two different models focusing on cases in
which agents cannot collaborate in advance to create a joint policy. Renoux et al. [58] represents each agent
in the system with a POMDP that reasons over extended belief states, which includes the agent’s own beliefs
over the environmental factors but also a level-1 nested belief over the other agents in the systems. The reward
function is based on a model of agent-based relevance, defined in [59] and presented in Equation 10.

rel𝑖 (𝑜) = 𝛼𝐷𝐾𝐿 (𝑏𝑡 ∥𝑏𝑡+1) + 𝛽 (𝐻 (𝑏𝑡 ) − 𝐻 (𝑏𝑡+1)) + 𝛿 (10)
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(a) Cooperative (b) Competitive

Fig. 5. Illustrative Target Tracking toy problem example for multi-agent settings, meaning a planning agent takes into account
the intentions or plans of the other agents or targets. Subfigure 5a illustrates the case when multiple agents act cooperatively
to identify the target; therefore, agents improve their behavior by avoiding actions that do not return added value. Subfigure
5b illustrates the case when the planning agent considers the target’s possible intentions to drive its actions.

where 𝑏𝑡 is the belief state of the agent before receiving the observation 𝑜 , 𝑏𝑡+1 is the belief state of the agent after
receiving the observation 𝑜 , 𝐷𝐾𝐿 is the Kullback-Leibler distance, and 𝐻 is the negative entropy. This formulation
assumes that an observation is relevant for a given agent if it is new (i.e., changes the agent’s belief significantly,
measured by the Kullback-Leibler distance) or allows to render the agent’s beliefs more precise (measured by the
difference in entropy). The parameters 𝛼 and 𝛽 allow balancing these two (sometimes contradictory) aspects,
and the parameter 𝛿 ensures that the relevance remains positive. Using this formulation and the extended belief
state, the agents can proactively weigh the expected impact of an observation for another agent and optimize
to send the most impactful one. This decentralized information sharing allows decentralized cooperation. To
solve the extended POMDP, Renoux et al. [58] transform it into a Belief-MDP, similar to what has been described
in the single-agent case (Section 4.2.3). Later, Renoux et al. [60] use similar extended belief states to extend the
POMDP-IR framework into a Communicative POMDP-IR (Com-POMDP-IR). The Com-POMDP-IR extends the
prediction actions from the POMDP-IR to incorporate predictions about a human operator’s belief state and uses
these prediction actions to optimize a communication strategy. In this case, the resulting POMDP is solved using
standard POMDP approaches, similar to what has been described in the single-agent case (Section 4.2.1).

Eck and Soh [22] also represents each agent as a POMDP and considers that each agent could request information
from their neighbors. When they share information, agents share their entire belief space, and the receiving
agent updates its own beliefs according to Equation 11.

𝑏′ (𝑥) = 𝑏 (𝑥) [𝑤 · 𝑏𝑆ℎ (𝑥) + (1 −𝑤) (1 − 𝑏𝑆ℎ (𝑥))]∑
𝑥 ′∈𝐷𝑂𝑀 (𝑋 ) 𝑏 ( 𝑗, 𝑥 ′) [𝑤 · 𝑏𝑆ℎ ( 𝑗, 𝑥 ′) + (1 −𝑤) (1 − 𝑏𝑆ℎ (𝑥 ′))]

(11)

where 𝑏 is the belief state of the agent receiving the information, 𝑏𝑆ℎ the shared belief space, 𝑥, 𝑥 ′ ∈ 𝐷𝑂𝑀 (𝑋 )
are the possible values for a partially observable phenomenon 𝑋 , and 𝑤 is a constant weight that dampens
shared information, as is commonly used in information fusion literature [27]. The resulting model is solved
by transforming it into a Knowledge POMDP, according to what has already been described in 4.2.3. The main
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difference between [58] and [22] lies in the fact that [58] exchanges single observations based on their estimated
relevance and update the planning agent’s belief state using standard POMDPs’ Bayes rule, while [22] exchanges
entire belief states and use an information fusion approach to merge the two belief states. However, both
approaches focus on “on-the-go” multi-agent cooperation, where previous synchronization is unnecessary.

Lauri et al. [42] propose an alternative approach to multi-agent active perception by extending the 𝜌-POMDP
approach to decentralized systems. The resulting 𝜌Dec-POMDP applies an entropymeasure to the reward function
to perform active sensing. The authors use an exact algorithm and assume periodic explicit communication
to compute a joint belief estimate. Lauri et al. [44] relax the explicit communication hypothesis and present a
heuristic for the 𝜌Dec-POMDP, making it possible to solve bigger problems. This heuristic uses a final reward
definition, i.e., a reward granted at the end of the finite horizon. This reward is also based on the Shannon
entropy of the joint belief, as in [42]. Because of this final reward, the algorithm in [44] and [45] still requires the
explicit computation of the joint belief estimate, requiring a large memory and computation overhead. Lauri and
Oliehoek [43] show that the 𝜌Dec-POMDP can be converted into a Dec-POMDP with linear rewards, similar to
the 𝜌-POMDP and POMDP-IR equivalence. To do so, the authors introduce individual prediction actions in the
𝜌Dec-POMDP model, similar to the prediction actions of the POMDP-IR model. This equivalence then allows to
use standard Dec-POMDP solvers and therefore does not require the computation of joint state estimates. Finally,
Best et al. [12] introduced the Decentralized Monte-Carlo Tree Search (Dec-MCTS), an online algorithm for
asynchronous multi-robot coordination. Even though the Dec-MCTS is not limited to active perception scenarios,
the authors illustrate its efficiency in an active perception scenario. Coordination is achieved by considering the
plans of the other robots, which are communicated during a dedicated communication phase.

In the approaches above, the active perception process only concerns environmental factors, and mechanisms
are implemented to allow the agents to reach a common belief over these factors. However, very little work has
been done to include active perception of the other agents’ internal states. To our knowledge, only Best et al. [13]
chose this approach and extended the Dec-MCTS model with a communication planning algorithm to optimize a
communication requests sequence. Agents evaluate other agents’ belief evolution and send a request for other
agents’ to send them their plan. In doing so, the agents introduce active perception actions over other agents’
internal states by only requesting their plan when needed.

5.2.2 Non-cooperative Settings. Non-cooperative settings focus on predicting the external agents’ behavior
by performing actions that will give the most information on their internal state. The external agents can be
self-interested, i.e., they share the same environment, but their goals do not conflict with the planning agents’
goals; or adversarial, i.e., their goals conflict with the planning agents’ goals. One could relate the problem of
active sensing in adversarial settings to the Adversarial Intention Recognition (AIR) problem. The AIR problem is
concerned with recognizing an adversarial agent’s goal or policy to prevent or counter its attack. However, existing
decision-theoretic approaches to solve the AIR problem focus on identifying behavior based on observation of
the adversary’s action but do not act explicitly to gather evidence and therefore do not include active perception
in their framework [2, 30].

Shen and How [68] explicitly consider an active perception scenario in which an opponent is either neutral, in
which case its behavior is modeled as a reactive policy, or adversary, in which case its behavior is modeled with
an MDP and bounded rationality. They then use a belief-space reward and a soft Q-Learning approach to optimize
the policy. So far, this is the only framework that tackles the problem of active perception in a non-cooperative
multi-agent setting.
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6 DISCUSSION

6.1 Reactive sensing
In our literature review, we grouped our findings into five major sub-categories: target tracking, classification
actions, external information metrics, sensing actions and oracular observation providers. In common, all of them
attempt to give agents tools to plan their actions to improve the available information about the environment or
some features of the environment. However, one of our major findings is that they differ in formulating that
goal. In other words, it lacks a common modeling framework that can systematically be used across different
application scenarios, although, of course, one might be able to reproduce most of them by adapting to a specific
scenario.
Also interesting to note that part of these approaches lay the foundations for the active sensing category. For

instance, classification rewards are a primitive form of defining the value of information, although not flexible in
formalizing the exact values of desired information. Extending the set of actions with extra actions which do not
directly influence the environment but rather the agent’s internal state is also commonly seen to influence the
agent’s decisions toward information gain. However, they are not coupled with explicit measures of the value of
information. Finally, the outsourcing of belief inference and use of external value of information metrics for a
state-based designed reward also shows hints of what is directly incorporated in active sensing methods.

Traditionally, for classic decision-theoretic formulations, information gain is a mean and not a goal in itself. In
other words, there is some physical objective, and sensing actions are an intermediate step toward achieving the
goal. As a consequence of not defining the reward based on information value metrics, reactive sensing approaches
follow this assumption but, in one way or another, tricks that formulation to perform some information gathering
task, e.g., the target tracking positive reward if the agent is in the same state as the target. Thus we claim that
these methods lack generality, for their models need scenario-dependent tweaks to achieve information-gathering
behaviors.

6.2 Single agent Active sensing
Contrary to our findings with reactive sensing methods, most of the literature found here follows systematic
approaches, i.e., that attempt to generally formalize the theoretical problem instead of focusing on solving a
specific scenario. We see a distinction between offline and online solvers. Offline solvers are mostly variations of
the POMDP-IR and 𝜌POMDP models. They are formulated around linearizations of the reward function, making
them compatible with the formulation of classic state-of-the-art solvers, in particular, point-based. On the other
hand, online solvers are more flexible, given that there are generally no restrictions to the format of the reward.
The efficiency of these approaches is still limited by how they handle key issues, such as the ability to choose
the most promising paths down the search tree. Typically, this can be achieved by maintaining lower and upper
bounds or computing rollouts from leaf nodes with particle-based methods. However, lower bounds are based
on rough offline approximations (which are PWLC-restricted), and rollouts are performed from state particles.
Solutions such as the bag of particles by 𝜌POMCP are promising, but their complexity is dependent on the inner
structure of the observation dynamics and, therefore, might not be feasible for complex problems.
We also note a remarkable contrast between the generality of active sensing approaches and their usage in

real-world scenarios. Although they present a systematic approach to the problem, we found only a few papers
reporting their application. Within those, there are information gathering problems for localization of objects
in domestic scenarios through an information-guided construction of semantic maps [78, 79], and the use of
𝜌POMDPs on smart grid management associated with privacy concerns [80]. However, this ability to transfer
between scenarios suggests that this framework generalizes better.
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6.3 Multi agent Active sensing
We found that research on multi-agent active sensing is still extremely recent, and a vast majority of models
target cooperative settings and focus on gathering environmental information. We noted two distinct approaches.
The first one focuses on ad-hoc configurations, in which it is not possible or desirable for the agents to coordinate
a plan a priori and integrate measures on what or when to share information in an "extended" single-agent
POMDP. The second approach focuses on extending existing multi-agent decision-theoretic models, namely,
Dec-POMDPs, to belief-based reward functions.

Research on non-cooperative settings and non-environmental information gathering is still extremely recent
and limited.

6.4 Future research directions
This survey allowed us to identify four directions in which future work would be beneficial.

Real-world applications of general frameworks. In our literature review, we found a surprising unbalance
between the number of tailored solutions for specific problems compared to the use of more general frameworks
applied to real-world applications. This indicates that, unlike what is commonly observed in other fields in which
theoretical advances are followed by the transfer of such knowledge to real-world problems, practitioners in
information gathering do not resort as much to the existing literature.

Model-free information gathering. By definition, frameworks that depend on the belief as the internal knowledge
state are model-based since the model of the world is needed to update the belief state. However, model-free
methods that learn policies for autonomous agents directly from the interaction with the environment are
continuously improving with impressive results by reinforcement learning agents in, for example, competitions
against humans [69]. Furthermore, online planning algorithms based on Monte Carlo tree search have shown
state-of-the-art results without needing the full environment model but access to a generative model (similar to
reinforcement learning). This indicates possible research opportunities to scale up active sensing methods, with a
couple of approaches cited in this paper already trying to alleviate the need for a full belief representation.

Non-cooperative multi-agent information gathering. The problem of multi-agent information gathering in
non-cooperative settings is still very unexplored in the decision-theoretic community. The possibility for agents
to reason about other agents’ internal states and act to perform active sensing on such internal states would be a
valuable step towards more generic and applicable models. To our knowledge, the most complete model allowing
an agent to reason on other agents’ models is the Interactive POMDP (I-POMDP) [28]. However, it has not yet
been extended or applied to active sensing scenarios.

Human-centered information gathering. All of the works reviewed in this survey consider only artificial planning
agents. When present, humans are merely receivers of the information (as in [60]). However, Hybrid Human-
Artificial Intelligence (HHAI), i.e., the development of artificially intelligent agents that can interact with humans
to leverage their strengths and empower them [1], is a rapidly growing field, and collaborative human-agent
information gathering scenarios are an important research domain. Future works could investigate how existing
models could account for human teammates and how to develop new approaches for hybrid active sensing.
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